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Audience and Prerequisites

Audience:

These notes were prepared for Kenan Flagler Business School’s
Daytime MBA program

The setting is a 14 session course

These notes serve as reference materials to complement our in-class
work using computational tools

Prerequisites:

Some knowledge of probability, statistics are expected

Knowledge of finance in general, and asset pricing, in particular is
expected
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Motivating Case Study

The motivating case study is portfolio allocation

However, the concepts and tools are widely applicable to a range of
settings within Finance

We group the concepts into the following functional steps within our
case study

1 Explore - Loading and cleaning data, EDA, etc..
2 Explain - Factor modeling, etc..
3 Forecast - Time series models, etc...
4 Protect - Portfolio allocation, risk measurement, etc..
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Housekeeping

Throughout the slide deck you will see “Q”, which indicates a
question to you, the reader

You will also see “A”, which indicates the associated answer

It is generally most efficient to learn this material through active
participation. Whenever you encounter a “Q”, be sure to try and
develop your answer before turning the page to the provided “A”
answer

I recommend reading through these slides before engaging in
associated coding exercises
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Outline

1 Compute Returns

2 Describe Returns

3 Inference
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Defining Returns

Realized return ≈ Cash Flows over life of investment as a % of
purchase price.

Unrealized returns are changes in asset value, which have yet to be
converted into cash.

For a stock, the cash flows are dividends. Unrealized returns are
capital gains, i.e. a change in the stock’s price.

For a bond, the cash flows might be interest and face value.
Unrealized returns are similarly a change in the bond’s market price.
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Outline

1 Compute Returns
Simple Returns
Inflation Adjusted Returns
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Log vs Simple
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Definition (Holding Period Yield)

Consider an asset without intermediate cash flows. Set t0 as the time of
purchase, and t1 as the time of sale.

R(t0, t1) =
Pt1 − Pt0

Pt0

=
Pt1

Pt0

− 1

Definition (Holding Period Return)

Consider an asset without intermediate cash flows. Set t0 as the time of
purchase, and t1 as the time of sale.

1 + R(t0, t1) =
Pt1

Pt0

Note: the term “return” is used colloquially for both HPY and HPR.
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Definition (Simple Net Return)

Assume 1 day holding period. Then we can define a
one day simple net return as

Rt =
Pt

Pt−1
− 1

Definition (Simple Gross Return)

Assume 1 day holding period. Then we can define a one day gross return
as

1 + Rt =
Pt

Pt−1
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Multi-Period Returns

The 2-day return (HPY) can be computed as

Rt,t−2 ≡ Rt(2) =
Pt − Pt−2

Pt−2
=

Pt

Pt−2
− 1

We can write this as

Rt(2) =
Pt

Pt−1

Pt−1

Pt−2
− 1

= (1 + Rt)(1 + Rt−1)− 1

= Rt−1 + Rt + RtRt−1

Rt(2) ≈ Rt−1 + Rt

if Rt and Rt−1 are small so that RtRt−1 ≈ 0.
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Multi-Period Returns

Definition

Consider an asset without intermediate cash flows. The H-period simple
net return is

Rt(H) ≈
H−1∑
j=0

Rt−j

Definition

Consider an asset without intermediate cash flows. The H-period simple
gross return (aka Geometric Return) is

1 + Rt(H) = (1 + Rt)(1 + Rt−1) · · · (1 + Rt−H+1)

=
H−1∏
j=0

(1 + Rt−j)
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Stock Returns

The intermediate cash flows for a stock are the dividends. We can adjust
return calculations as follows:

Rt =
Pt + Dt − Pt−1

Pt−1

=
Pt + Dt

Pt−1
− 1

1 + Rt =
Pt

Pt−1
+

Dt

Pt−1

Stock Returns = Capital Gains Yield + Dividend Yield
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Bond Returns

The 1yr holding period for a 30yr US Treasury bond with a 6% annual
coupon rate is

Rt =
Pt + Ct − Pt−1

Pt−1

=
Pt + Ct

Pt−1
− 1

1 + Rt =
Pt

Pt−1
+

Ct

Pt−1

Bond Returns = Capital Gains Yield + Coupon Rate

Assumes purchased at par such that Pt−1 equals face value.
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Annualized Returns

14/88



Annualized Returns

Example

Consider an asset measured at a quarterly frequency. Suppose the most
recent quarterly return is Rt = Pt

Pt−1
− 1. What is the annualized rate of

return on this asset (RA)?

We assume that the asset will continue to grow at its current pace for the
rest of the year, such that Rt = Rt+1 = Rt+2 = Rt+3 = R. Then,
1 + Rt(4) = (1 + Rt)(1 + Rt+1)(1 + Rt+2)(1 + Rt+3) = (1 + R)4. This
implies that RA(1) = (1 + R)4 − 1.
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Definition (Simple Annualized Returns)

Rt(H)A = (1 + Rt(H))
#of periods per yr

H − 1

Rt(H)A =

(
Pt

Pt−H

)#of periods per yr
H

− 1
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Outline

1 Compute Returns
Simple Returns
Inflation Adjusted Returns
Continuously Compounded Returns
Log vs Simple
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Real Returns

To adjust for price changes, macroeconomists give us the relation:

Real =
Nominal

Deflator

Let’s use the CPI as our measure of the price level, and inflation given by

πt =
CPIt
CPIt−1

− 1

We can define P real as the (real) inflation adjusted price, such that

P real
t =

Pt

CPIt
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Real Returns

We can “deflate” returns by

R real
t =

P real
t

P real
t−1

− 1 =
Pt
CPIt
Pt−1

CPIt−1

− 1

=
Pt

Pt−1

CPIt−1

CPIt
− 1

Notice: CPIt
CPIt−1

= 1 + πt .

Definition (Simple Inflation Adjusted Returns)

R real
t =

1 + Rt

1 + πt
− 1
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1 Compute Returns
Inflation Adjusted Returns

Currency Adjusted Foreign Returns
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Calculating Domestic Currency Returns

1 Start with (for instance) $100.

2 Convert to euros with FXt−1 = et−1$

AC → $100
FXt−1

3 Grow at euro rate: $100
FXt−1

(1 + RACt )

4 Repatriate at FXt → $100
FXt−1

(1 + RACt )FXt

5 Compute dollar returns
$100

FXt−1
(1+RACt )FXt

$100 − 1

Definition (Currency Adjusted Returns)

Denote $ as the domestic currency and AC as the foreign currency. Define
the exchange rate as FXt = et$

AC . Then the one period dollar-return of an
investment made in a euro denominated asset can be written as

R$
t =

FXt

FXt−1
(1 + RACt )− 1
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Definition (Log Returns)

Consider an asset with no intermediate cash flows. Define the ln operator
as the natural log; i.e. base e, not base 10. The one period continuously
compounded return is

rt = ln(1 + Rt) = ln(
Pt

Pt−1
) = ln(Pt)− ln(Pt−1)

Note that we can always convert from continuously compounded to simple
returns:

Rt = ert − 1
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Multi-period Returns

rt(2) = ln(1 + Rt(2)) = ln

(
Pt

Pt−2

)
= ln

(
Pt

Pt−1

Pt−1

Pt−2

)
= ln

(
Pt

Pt−1

)
+ ln

(
Pt−1

Pt−2

)
= rt + rt−1

Definition

Consider an asset with no intermediate cash flows. The H-period
continuously compounded return is

rt(H) =
H−1∑
j=0

rt−j
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Definition (Continuously Compounded Annualized Returns)

rt(H)A =

(
#of periods per year

H

)
× rt(H)

26/88



Outline

1 Compute Returns
Continuously Compounded Returns

Annualized Returns
Inflation Adjusted Returns
Currency Adjusted Foreign Returns

27/88



Real Returns

Deflating continuously compounded returns follows a similar logic to
simple returns.

r realt = ln(1 + R real
t )

= ln

(
Pt

Pt−1

CPIt−1

CPIt

)
= ln

(
Pt

Pt−1

)
+ ln

(
CPIt−1

CPIt

)
= ln

(
Pt

Pt−1

)
− ln

(
CPIt
CPIt−1

)
= rt − πct

where πct = ln(1 + πt).

Definition (Continuously Compounded Inflation Adjusted Returns)

r realt = rt − πct
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Calculating Domestic Currency Returns

1 Start with (for instance) $100.

2 Convert to euros with FXt−1 = et−1$

AC → $100
FXt−1

3 Grow at euro rate: $100
FXt−1

(1 + rACt )

4 Repatriate at FXt → $100
FXt−1

(1 + rACt )FXt

5 Compute dollar returns
$100

FXt−1
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$100 − 1

Definition (Currency Adjusted Returns)

Denote $ as the domestic currency and AC as the foreign currency. Define
the exchange rate as FXt = et$

AC . Then the one period dollar-return of an
investment made in a euro denominated asset can be written as

r$
t =

FXt

FXt−1
(1 + rACt )− 1
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Log Returns or Simple Returns?

Simple Returns

Sum(Logs) 6= Log(Sums), so

Simple Returns are more appropriate for portfolio construction and
performance reporting

Log Returns

Time Series properties of sums are easier to analyze than products, so

Log Returns are more appropriate for regression and inference

Bottom Line

Simple and Log Returns should be close in most cases.

You need to know when to use each.
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2 Describe Returns
Probability
Central Tendency, Dispersion, Relatedness
Common Probability Distributions
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What is the probability of an event occurring?

Definition (Probability Density Function (p.d.f.) of X )
Define X as a random variable and x as the realization of that random variable. The pdf of X is

defined as f (x) ≥ 0 ∀ x such that

Pr(a < X ≤ b) =

∫ b

a
f (x)dx∫ +∞

−∞
f (x)dx = 1
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Definition (Cumulative Distribution Function (c.d.f.) of X )

Define the cdf of X as F (x) such that

F (x) = Pr(X ≤ x) =

∫ x

−∞
f (t)dt

F ′(x) =
∂F (x)

∂x
= f (x)
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What is the probability of an event occurring?

Definition (Quantile Function ”Inverse CDF”)

The value F−1(p) is called the p-quantile of X for each 0 < p < 1.

5% of the values of X are less
than X ∗.

F (X ∗) = Pr(X ≤ X ∗) = 5%.

X ∗ is also referred to as the 5th

percentile
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What is the probability of an event occurring?

Commonly Used Quantiles

Percentiles: .01-quantile, .02-quantile, ...., .99-quantile

Quintiles: .2-quantile, .4-quantile, .6-quantile, .8-quantile

Quartiles: .25-quantile, .50-quantile, .75-quantile

Interquartile Range: 3rd Quartile - 1st Quartile

Deciles: .1-quantile, .2-quantile, ..., .9-quantile
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How do we Describe a Probability Distribution?

Moments of the Distribution

First Moment = Expected Value [Central Tendency]

Second Moment = Variance [Dispersion]

Third Moment = Skewness [Symmetry]

Fourth Moment = Kurtosis [Tail Thickness]
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What is the Central Tendency of the returns?

Definition (Expected Value; i.e. ”Population Mean”)

Weighted average of all possible values, taking the probability of each
outcome as the weights.

E (X ) ≡ µX =

∫ +∞

−∞
Xf (X )dX
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What is the Dispersion of the returns?

Definition (Population Variance)

Var(X ) ≡ σ2
X = E

{
(X − µX )2

}
=

∫ +∞

−∞
(X − µX )2f (X )dX

Std(X ) ≡ σX =
√
σ2
X
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Are returns symmetric?

Definition (Population Skewness)

S(X ) = E

[(
X − µ
σ

)3
]
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Are returns heavy-tailed?

Definition (Population Kurtosis)

K (X ) = E

[(
X − µ
σ

)4
]
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What is the Relationship between Two R.V.s?

Definition (Covariance & Correlation)

Cov(X ,Y ) ≡ σXY = E {(X − µX )(Y − µY )} = E [XY ]− µXµY
Corr(X ,Y ) ≡ ρXY =

σXY
σXσY

Definition (Independence)

Random variables X and Y are independent if
E [g(X )h(Y )] = E [g(X )]E [h(Y )] for any g(X ) and h(Y ).

Independence implies covariance = 0.

But covariance = 0 does not imply independence.
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What is the Relationship between Two R.V.s?

Definition (Independent and Identically Distributed (iid))

Two random variables are i.i.d if they have the same distribution (i.e.
same family as well as moments) and are independent.
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Common Estimators of Moments

Population Estimator (i.e. “Sample”)

E [X ] ≡ µ X̄ = 1
T

∑T
t=1 Xt

σ2
X s2

X = 1
T−1

∑T
t=1 (Xt − X̄ )2; sX =

√
s2
X

S(X ) Ŝ(X ) = T
(T−1)(T−2)

∑T
t=1 (Xt−X̄ )3

s3
X

Ŝ(X ) ≈ 1
T

∑T
t=1 (Xt−X̄ )3

s3
X

K (X ) K̂ (X ) = T (T+1)
(T−1)(T−2)(T−3)

∑T
t=1(Xt−X̄ )4

s4
X

K̂ (X ) ≈ 1
t

∑T
t=1(Xt−X̄ )4

s4
X

σXY sXY = 1
T−1

∑T
T=1 (Xt − X̄ )(Yt − Ȳ )

ρXY rXY = sXY√
s2
X s

2
Y
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Ŝ(X ) ≈ 1
T

∑T
t=1 (Xt−X̄ )3

s3
X

K (X ) K̂ (X ) = T (T+1)
(T−1)(T−2)(T−3)

∑T
t=1(Xt−X̄ )4

s4
X

K̂ (X ) ≈ 1
t

∑T
t=1(Xt−X̄ )4

s4
X

σXY sXY = 1
T−1

∑T
T=1 (Xt − X̄ )(Yt − Ȳ )
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Ŝ(X ) ≈ 1
T

∑T
t=1 (Xt−X̄ )3

s3
X

K (X ) K̂ (X ) = T (T+1)
(T−1)(T−2)(T−3)

∑T
t=1(Xt−X̄ )4

s4
X

K̂ (X ) ≈ 1
t

∑T
t=1(Xt−X̄ )4

s4
X

σXY sXY = 1
T−1

∑T
T=1 (Xt − X̄ )(Yt − Ȳ )
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Arithmetic vs Geometric Mean Return

When applied to returns, the sample estimator R̄ = 1
T

∑T
t=1 Rt is referred

to as the “arithmetic” mean return.

Arithmetic Geometric

Formula 1
T

∑T
t=1 Rt [

∏T
t=1(1 + Rt)]1/T − 1

Compounding Ignores Includes

Typical Use Case Planning Performance Reporting
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Outline

2 Describe Returns
Probability
Central Tendency, Dispersion, Relatedness
Common Probability Distributions
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Definition (Normal ”Gaussian” Distribution)

f (X ) =
1

(2π)1/2σ
exp

[
−1

2

(
X − µ
σ

)2
]

for −∞ < X <∞.
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Definition (Normal ”Gaussian” Distribution)

f (X ) =
1

(2π)1/2σ
exp

[
−1

2

(
X − µ
σ

)2
]

for −∞ < X <∞.

X ∼ N(µ, σ2).

If X ∼ N(µ, σ2), then Z ≡ X−µ
σ ∼ N(0, 1).

f (Z ) ≡ φ(Z ), and F (z) ≡ Φ(z).

If X ∼ N(µ, σ2), then aX + b ∼ N(aµ+ b, a2σ2).

52/88



Definition (Normal ”Gaussian” Distribution)

f (X ) =
1

(2π)1/2σ
exp

[
−1

2

(
X − µ
σ

)2
]

for −∞ < X <∞.

X ∼ N(µ, σ2).

If X ∼ N(µ, σ2), then Z ≡ X−µ
σ ∼ N(0, 1).

f (Z ) ≡ φ(Z ), and F (z) ≡ Φ(z).

If X ∼ N(µ, σ2), then aX + b ∼ N(aµ+ b, a2σ2).

52/88



Definition (Normal ”Gaussian” Distribution)

f (X ) =
1

(2π)1/2σ
exp

[
−1

2

(
X − µ
σ

)2
]

for −∞ < X <∞.

X ∼ N(µ, σ2).

If X ∼ N(µ, σ2), then Z ≡ X−µ
σ ∼ N(0, 1).

f (Z ) ≡ φ(Z ), and F (z) ≡ Φ(z).

If X ∼ N(µ, σ2), then aX + b ∼ N(aµ+ b, a2σ2).

52/88



Definition (Normal ”Gaussian” Distribution)

f (X ) =
1

(2π)1/2σ
exp

[
−1

2

(
X − µ
σ

)2
]

for −∞ < X <∞.

X ∼ N(µ, σ2).

If X ∼ N(µ, σ2), then Z ≡ X−µ
σ ∼ N(0, 1).

f (Z ) ≡ φ(Z ), and F (z) ≡ Φ(z).

If X ∼ N(µ, σ2), then aX + b ∼ N(aµ+ b, a2σ2).

52/88



Definition (Normal ”Gaussian” Distribution)

f (X ) =
1

(2π)1/2σ
exp

[
−1

2

(
X − µ
σ

)2
]

for −∞ < X <∞.

X ∼ N(µ, σ2).

If X ∼ N(µ, σ2), then Z ≡ X−µ
σ ∼ N(0, 1).

f (Z ) ≡ φ(Z ), and F (z) ≡ Φ(z).

If X ∼ N(µ, σ2), then aX + b ∼ N(aµ+ b, a2σ2).

52/88



Sum of Gaussian Random Variables

Definition (Sum of Normals)

If X ∼ N(µX , σ
2
X ), Y ∼ N(µY , σ

2
Y ),and Z = X + Y , then

Z ∼ N(µX + µY , σ
2
X + σ2

Y + 2ρσXσY )

Definition (Sum of Independent Normals)

If X ∼ N(µX , σ
2
X ), Y ∼ N(µY , σ

2
Y ),and Z = X + Y , then

Z ∼ N(µX + µY , σ
2
X + σ2

Y )
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Modeling Prices, Not Returns

A common model of returns assumes R1,R2, ... are iid N(µ, σ2). Two
problems arise:

1 Limited Liability (Pt ≥ 0→ Rt ≥ −1) can be violated with Gaussian
returns.

2 Even though Rt is Gaussian, multi-period returns
Rt(H) =

∏H−1
j=0 (1 + Rt−j)− 1 are not.

Solution:

Assume (1 + R) ∼ LogNormal

Implies that r ≡ ln(1 + R) ∼ N(µ, σ2)
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Definition (Log Normal Distribution)

f (X ) =
1

X (2π)1/2σ
exp

[
−1

2

(
ln(X )− µ

σ

)2
]

for 0 < X <∞. If ln(X ) ∼ N, then X ∼ log Normal. Especially useful for
prices, rather than returns.

55/88



Modeling Prices, Not Returns

Resolving Limited Liability
Recall rt = ln(1 + Rt). Notice that exp(rt) = exp(ln(1 + Rt)) = 1 + Rt .
Recall that the exponential function has positive range, implying that
(1 + Rt) ≥ 0→ Rt ≥ −1 → Pt ≥ 0.

Resolving the lack of Multi-Period Gaussianity

1 + Rt(H) = (1 + Rt)(1 + Rt−1)....

= exp(rt)exp(rt−1)...

= exp(rt + rt+1 + ....)

ln(1 + Rt) = rt + rt−1 + ...

Recall that the sum of Gaussian r.v.’s is Gaussian.
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Definition (Random Walk)

Let Z1,Z2, ... be iid with mean µ and variance σ2. Let P0 be an arbitrary
starting price. Then we can define the price process as a random walk if

Pt = P0 + Z1 + ...Zt ∀ t

Definition (Geometric Random Walk)

Recall Pt
Pt−H

= 1 + Rt(H) = exp(rt + ...+ rt−H+1), which implies

Pt = P0exp(rt + ...+ r1)

If r1, r2, ... are iid N(µ, σ2) then we call the price process a lognormal
geometric random walk with parameters (µ, σ2).
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Definition (Chi-Square Distribution)

Let Zi , i = 1, 2, ..., n be independent, identically distributed N(0, 1). If,

X =
n∑

i=1

Z 2
i

then X ∼ χ2
n, where n corresponds to the degrees of freedom.
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Definition (t-Distribution)

Let Z ∼ N(0, 1) and X ∼ χ2
n. Assume Z and X are independent. If,

T =
Z√
X/n

then T ∼ tn, where N corresponds to the degrees of freedom.
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Definition (F-Distribution)

Let X1 ∼ χ2
k1

and X2 ∼ χ2
k2

. Assume X1 and X2 are independent. If

F =
X1/k1

X2/k2

then F ∼ Fk1,k2 where (k1, k2) are the degrees of freedom.
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Reminder of Goal

Hypothesis testing can help determine STATISTICAL significance

Is the return = 0? Is the beta of this asset greater than 1? Is the
standard deviation of cash flows for project A equal to that of project
B?

Relying exclusively on sample statistics may be misleading

Variability in the sample data will influence our confidence that the
the sample statistics match the true population measures

Hypothesis testing is a way to account for this uncertainty

This tool is broad, so in the following we will use a generic Y variable
to be our object of interest
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Outline

3 Inference
Anatomy of a Hyp. Test
Evaluating a Hyp. Test
Common Tests
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Anatomy of a Hypothesis Test

The null hypothesis (H0) and the alternative hypothesis (H1) of the
one-sample t-test can be expressed as

H0 : E [Y ] = µ0

H1 : E [Y ] 6= µ0

H0 – the population expectation E [Y ] is equal to the proposed (aka
hypothesized) value µ0

H1 – the population expectation E [Y ] is NOT equal to the proposed (aka
hypothesized) value µ0
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Anatomy of a Hypothesis Test

The alternative hypothesis E [Y ] 6= µ0 contains two cases:

E [Y ] > µ0 and E [Y ] < µ0

Hence, when cast this way, H0 and H1 form a two-sided test.

If the alternative hypothesis is cast as either of the inequalities above, we
have a one-sided test.
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How do we choose Null and Alternative?

H0 — Null Hypothesis is usually considered as established consensus.
What is already believed. Least costly. That which requires no further
action. Assumed to be true until “proven” otherwise.

H1 — Alternative Hypothesis is something different than consensus. What
you believe might be true, but is different from others. Not the base case.
If true, leads to costly action.
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Constructing a Test

Suppose we are using Ȳ as an estimator for E [Y ] and want to test
H0 : E [Y ] = µ0.

Is Ȳ close enough to µ0?
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Constructing a Test

Suppose we are using Ȳ as an estimator for E [Y ] and want to test
H0 : E [Y ] = µ0.

Is Ȳ close enough to µ0? - How about now?
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Constructing a Test

Suppose we are using Ȳ as an estimator for E [Y ] and want to test
H0 : E [Y ] = µ0.

How close do µ0 and Ȳ have to be to say they are equal?
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Constructing a Test

A hypothesis testing procedure can answer that question.

1 Rescale (standardize) the data to generate a test statistic

2 Establish critical values

3 Compare the critical values to the observed test statistic
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Constructing a Test
Rescaling

The first thing we do is to rescale (standardize) the data.
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Constructing a Test
Generate Test Statistic

One Sample t-test of the Mean
H0 : E [Y ] = µ0 vs H1 : E [Y ] 6= µ0

tstat =
Ȳ − µ0

sY /
√
N

where

tstat = test statistic

µ0 = Proposed constant for the population expectation

Ȳ = Sample mean

N = Sample size (i.e. number of observations)

sY = Sample standard deviation
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Constructing a Test
Establish Critical Values

where tcrit is the “critical” value.
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Constructing a Test
Compare Test Statistic to Critical Value

Reject H0 if |tstat | > tcrit

Fail to Reject H0 otherwise.
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Fail to Reject vs Accept

Why do we say “Fail to Reject” rather than “Accept”?

Suppose our proposed value µ0 = 5. Suppose our estimate Ȳ = 4.95.

Consider the test H0 : E [Y ] = µ0 vs H1 : E [Y ] 6= µ0

Suppose that given the sampling error, our data is consistent with the
null.

We are NOT saying that 4.95=5.

We are saying that 4.95 is statistically close enough to 5.

Hence, we are NOT “Accepting” the null. We “Fail to Reject”.
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How Set Critical Values?

Where do we draw the critical values?
Depends on what types of mistakes we are willing to permit.

H0 True H0 False

“Accept” H0 Type 2 Error (false -)

“Reject” H0 Type 1 Error (false +) Power
α, size
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How Set Critical Values?

Suppose you want to reduce the
Type 1 error. How set critical

values? What is the ”side effect”?

Type 2 error is higher
More likely that we accept the false H0

Pr(Accept H0|H0 False) is High

Suppose you want to reduce the
Type 2 error. How set critical

values? What is the ”side effect”?

Type 1 error is higher
More likely that we reject the true H0

Pr(Reject H0|H0 True) is High
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How Set Critical Values?
Why do Judges say “Not Guilty” instead of “Innocent”?

H0 True H0 False

“Accept” H0 Type 2 Error (false -)
Let Guilty go Free

“Reject” H0 Type 1 Error Power
Send Innocent to Jail

U.S. Legal convention is to minimize Type 1 Error. That is viewed as the
more important mistake to avoid. H0 : Innocent; HA : Guilty.
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How Set Critical Values?

Critical values typically chosen to set Type 1 Error ≈ {1%, 5%, 10%}

As we permit smaller Type 1 Errors, the critical value grows (in absolute
terms), implying that we are less likely to reject a null hypothesis (i.e.
Type 2 error rises)
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How Set Critical Values?

Critical values are also as function of the sample size (N).

The sample size influences the degrees of freedom.

Degrees of Freedom: df (or dof) = N-1

As the df grows, the distribution of the distribution of the t-statistic
approaches Normal distribution

As df rises, the critical value falls, implying more likely to reject.

Small sample sizes imply df are low, which means critical values are higher,
so the likelihood to reject falls, and Type 2 Error rises.
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Evaluating the Test

Definition (p-Value)

A p-Value is the largest significance level at which we could carry out the
test and still fail to reject the null hypothesis

p = 2Pr(t > tstat)

2[1− F (tstat)]

Example: p-Val=.03 means 3% chance of getting a t − value “greater”
than the tstat .
Slightly more precisely, there is a 1.5% chance of getting a t-value greater
than the tstat and 1.5% chance of getting a t-value less than the −tstat .
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Evaluating the Test

One Sample t-test of the Mean
H0 : E [Y ] = µ0 vs H1 : E [Y ] 6= µ0

tstat =
Ȳ − µ0

sY /
√
N

where

tstat = test statistic

µ0 = Proposed constant for the population expectation

Ȳ = Sample mean

N = Sample size (i.e. number of observations)

sY = Sample standard deviation

Reject H0 if |tstat | > tcrit or if p − Val < α
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Evaluating the Test

Since tstat > tcrit.05 we reject at the 5% level

Since tstat < tcrit.01 we fail to reject at the 1% level

Rule of Thumb: Reject if tstat > 2

Since p = .015 ∗ 2 = .03, we fail to reject the null at α < .03
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Testing Equality of Two Means

Myriad tests are possible (means, variances, etc..). A common application
you will face is testing the equality of two averages.

H0 : E [Y1]− E [Y2] = µ0

H1 : E [Y1]− E [Y2] 6= µ0

By setting µ0 = 0 we can test equality of the two series’ expected values
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Testing Equality of Two Means

Let’s use the sample averages to determine if the expected values are
equal.
H0 : E [Y1] = E [Y2] vs H1 : E [Y1] 6= E [Y2]

tstat =
Ȳ1 − Ȳ2√
s2
Y1
N1

+
s2
Y2
N2

where

Ȳi = Sample mean (i=1,2)

Ni = Sample size (i=1,2)

s2
Yi

= Sample Variance (i=1,2)

Typical implementation is via Welch (‘47, ‘51)
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Testing Equality of Two Proportions

Suppose you want to determine if two proportions are equal. Then we can
establish H0 : pA = pB vs H1 : pA 6= pB via

z =
pA − pB√

p(1− p)/NA + p(1− p)/NB

where

p̃i as the true proportion for group i and pi as its sample counterpart

Ni as the sample size of group i

p = (paNA + pBNB)/(NA + NB)

This test statistic follows a standard normal, but other implementations
are available (e.g. Chi-square tests).
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