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Audience and Prerequisites

Audience:

These notes were prepared for Kenan Flagler Business School’s
Daytime MBA program

The setting is a 14 session course

These notes serve as reference materials to complement our in-class
work using computational tools

Prerequisites:

Some knowledge of probability, statistics are expected

Knowledge of finance in general, and asset pricing, in particular is
expected
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Motivating Case Study

The motivating case study is portfolio allocation

However, the concepts and tools are widely applicable to a range of
settings within Finance

We group the concepts into the following functional steps within our
case study

1 Explore - Loading and cleaning data, EDA, etc..
2 Explain - Factor modeling, etc..
3 Forecast - Time series models, etc...
4 Protect - Portfolio allocation, risk measurement, etc..
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Housekeeping

Throughout the slide deck you will see “Q”, which indicates a
question to you, the reader

You will also see “A”, which indicates the associated answer

It is generally most efficient to learn this material through active
participation. Whenever you encounter a “Q”, be sure to try and
develop your answer before turning the page to the provided “A”
answer

I recommend reading through these slides before engaging in
associated coding exercises
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Outline

1 Anatomy of Forecasts

2 Averages and Time Trends

3 Time Series

4 Factor Models
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Task: Forecast Asset Returns

Et [rt+h|t ] =?
h = forecast horizon
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Common Return Forecasting Techniques

Historical Averages

Trend Extrapolation

Time Series

Factor Models
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Forecast Evaluation Measures

rt+h|t = β1 + β2Xt + ut+h

r̂t+h|t = β̂1 + β̂2Xt

ût+h = rt+h − r̂t+h|t

ME = 1
T

∑T
t=1 ût+h|t

MSE = 1
T

∑T
t=1 û

2
t+h|t

RMSE =
√
MSE

MAE = 1
T

∑T
t=1 |ût+h|t |

MAPE = 1
T

∑T
t=1 |

ût+h|t
rt+h
|
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Forecast Types

One Step Ahead vs Multi Step Ahead

Lagged Regressors vs Time Series Models

Static vs Dynamic Forecasting

Backtesting: Training Period, Evaluation Period, Forecast Period
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Forecast Types
One Step Ahead Forecasts
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Forecast Types
Multi Step Ahead Forecasts
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Forecast Types
Dynamic Forecasts
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Forecast Types
Static Forecasts
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Forecast Types
Forecast Errors
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Forecast Types
Model Evaluation
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Historical Average

Et [rt+h|t ] = 1
T

∑T
t=1 rt+h|t

How far back do you go? — Bigger h requires bigger T

Caution: Will history repeat itself?
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Trend Extrapolation

rt+h|t = α + β × t + ut

Over what horizon do you take the trend?

Caution: Will history repeat itself?
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Figure: IBM Intraday 2/5/15 Figure: Simulated Returns

Random Walk
rt = rt−1 + εt ; εt ∼ N(0, 1)
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Definition

A moving average process of order q [MA(q)] can be represented by

rt = µ+

q∑
j=1

αjεt−j + εt

where ε ∼ N(0, σ2) iid

Definition

An autoregressive process of order p [AR(p)] can be represented by

rt =

p∑
j=1

θj rt−j + εt

where ε ∼ N(0, σ2) iid
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Definition

An ARMA(p,q) process can be represented by

rt = µ+

p∑
j=1

θj rt−j +

q∑
j=1

αjεt−j + εt
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Model Choice via Box Jenkins

Definition

The kth autocorrelation is defined as

ρk =
Cov(yt , yt−k)

V (yt)

Definition

The kth partial autocorrelation is defined as the estimate of θk in the
AR(k) autoregression. For instance

pac1 = θ̂1 from yt = θ1yt−1 + εt

pac2 = θ̂2 from yt = θ1yt−1 + θ2yt−2 + εt
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Model Choice via Box Jenkins

Rules of Thumb

An AR(p) process is described by

1 An ACF with slow decay

2 A PACF that is (close to) zero for lags larger than p

An MA(q) process is described by

1 An ACF that is (close to) zero for lags larger than q

2 A PACF with slow decay

An ARMA process is described by

Slow decay in both ACF and PACF
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Example (Reading the Correlogram)

What model specification seems appropriate given the correlogram below?
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Example (Reading the Correlogram)

The slowly decaying ACF and the spike at 1 lag for the PACF suggest an
AR(1) might be appropriate.
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Diagnostic Checking

1 After fitting a potential model, conduct the ”usual” overfitting and
parameter tests of added variables (t and F tests).

2 Plot the residuals and look for patterns as a sign of misspecification.
3 Conduct a test of white noise (W.N.) on the residuals

H0 : Residuals are W.N. vs Ha : Residuals are not W.N.
Test Statistic: QK = T (T + 2)

∑K
k=1

1
T−k ρ̂

2
k , where ρ̂k are the

estimated autocorrelation coefficients of residuals ε̂t at lag k.
Critical Value: QK ∼ χ2(K )

4 Search for the smallest AIC and/or BIC values

AIC = ln(σ̂2
ε ) + 2(p + q)/T

BIC = ln(σ̂2
ε ) + log(T )(p + q)/T
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Factor Models - First Pass

rt − r f = α + β1F1,t + β2F2,t + · · ·+ ut

CAPM rt − r f = α + β[rMt − r f ] + ut
Fama French rt − r f = α + β1[rMt − r f ] + β2HMLt + β3SMBt + ut
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Factor Models - First Pass

rt − r f = α + β[rMt − r f ] + ut

Caution: This model is not predictive.

Solutions:

rt − r f = α + β[rMt−1 − r f ] + ut ; Caution: Defies theory.

Use subjective input for Et(r
M
t+h).

Forecast Et(r
M
t+h) with a time series (or some other) model.
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Factor Models - Second Pass

ri − r f = λ0 + λ1β̂i + ui

Forecast returns via: ˆ̂ri − r f = ˆ̂
λ0 + ˆ̂

λ1β̂i , where we use two (̂.)’s to denote
the second pass estimation.

Notice that there is no time series here.

Caution: Assumes β’s and λ’s are stable over time.

31/31


	Anatomy of Forecasts
	Averages and Time Trends
	Time Series
	Factor Models

